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1. Research Introduction 

        In the increasingly sophisticated and technologically advanced world, image 

recognition has become a very popular technology that contributes to a wide variety of 

applications. One of the most effective approaches is convolutional neural network, 

which is a type of artificial neural network that uses biologically-inspired neurons and 

repeated convolutions to analyze visual imageries. For any dataset of images, 

convolutional neural networks with different hyperparameters have different 

performances. Two algorithms that optimize the hyperparameters are Random Search and 

Tree-Structured Parzen Estimator. This paper is an investigation on the effectiveness of 

Random Search and Tree-Structured Parzen Estimator to optimize convolutional neural 

networks for image recognition. 
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2. Background 

2.1 Image Recognition 

        Image recognition refers to the process of computers to determine and recognize the 

image data as belonging to a set of categories1. As one of the most popular and classical 

problem in computer vision and image processing, it embodies a variety of more specific 

recognition tasks, such as object identification, detection, and segmentation1. The 

approaches and algorithms produced for image recognition contribute to a wide variety of 

modern applications, including content-based image retrieval, pose estimation, optical 

character recognition, and facial recognition.

2 

                                                           

1 Li, Fei-Fei. “Image Classification.” CS231n Convolutional Neural Networks for Visual 

Recognition, Stanford University, cs231n.github.io/classification/. 

2 Russel, Bryan. “Object Recognition by Scene Alignment.” Object Recognition by Scene 

Alignment, Bryan Russel, bryanrussell.org/projects/recognitionBySceneAlignment/index.html. 
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        Currently, the algorithms that have the best performances for image recognition are 

based on convolutional neural networks, due to their highly effective handling of image 

data and efficient management of memory and storage space. 

 

2.2 Convolutional Neural Network 

        The convolutional neural network (CNN) is a type of artificial neural network that 

has been successfully adapted to image analyzing and classifying tasks3. Its most 

prominent feature is convolution, which extracts features from a given image by stepping 

through the pixels of the input data4. The purpose of CNN in image classification is to 

categorize images into their specific classes by conducting a series of mathematical 

operations on the image data.  

                                                           

3 Ujjwalkarn. “An Intuitive Explanation of Convolutional Neural Networks.” An Intuitive 

Explanation of Convolutional Neural Networks, The Data Science Blog, 11 Aug. 2016, 

ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/. 

4 Ujjwalkarn. “An Intuitive Explanation of Convolutional Neural Networks.” An Intuitive 

Explanation of Convolutional Neural Networks, The Data Science Blog, 11 Aug. 2016, 

ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/. 
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5 

 

        A CNN consists of a number of different layers, each specified for different tasks of 

image recognition. In the following descriptions, the image of a car is used as an example 

to explain the architecture of a CNN. 

        At the first layer, which is the input layer, the image of a car is fed to the CNN.  

        Within the convolutional layers, the pixel values of the car image are traversed by 

filters that search for different features of the car. The convolutions perform dot products 

between the values in the filters and the pixel values of the images to form new feature 

maps, which are inputted to the next layer6. Each feature map 𝑌𝑘 can be computed by 

                                                           

5 “Convolutional Neural Network.” Convolutional Neural Network, Mathlab, 

www.mathworks.com/discovery/convolutional-neural-network.html. 

6 Ujjwalkarn. “An Intuitive Explanation of Convolutional Neural Networks.” An Intuitive 

Explanation of Convolutional Neural Networks, The Data Science Blog, 11 Aug. 2016, 

ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/. 
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where x represents the input image, 𝑊𝑘 represents the filter corresponding to the kth 

feature map, and f represents the specific activation function used7. Activation functions 

are utilized in order to increase the nonlinearity of the neural network, which prevents it 

from overfitting into linear and simple shapes. 

        The most popular activation function, Rectified Linear Units layers (ReLU), 

changes all negative pixel values within certain receptive fields into 08. The resultant 

values of the receptive fields after RELU f(x) is thus computed by 

 

where x is a pixel value of the input image9. 

        After convolutional and ReLU layers, pooling layers are introduced to reduce the 

size of the previous feature maps and therefore lower the training time of the CNNs10. 

                                                           

7 Rawat, Waseem, and Zenghui Wang. “Deep Convolutional Neural Networks for Image 

Classification: A Comprehensive Review.” Neural Computation, vol. 29, no. 9, 2017, pp. 2352–

2449., doi:10.1162/neco_a_00990. 

8 Deshpande, Adit. “A Beginner's Guide To Understanding Convolutional Neural Networks Part 

2.” A Beginner's Guide To Understanding Convolutional Neural Networks, Github, 29 July 2016, 

adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-

Convolutional-Neural-Networks-Part-2/. 

9 Li, Fei-Fei. “Convolutional Neural Networks for Image Recognition.” CS231n Convolutional 

Neural Networks for Visual Recognition, Stanford University, cs231n.github.io/neural-networks-

1/. 

10 Deshpande, Adit. “A Beginner's Guide To Understanding Convolutional Neural Networks Part 

2.” A Beginner's Guide To Understanding Convolutional Neural Networks, Github, 29 July 2016, 
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The most popular method is max pooling, which outputs the maximum pixel value within 

each subregion of the receptive fields. The values selected by RELU denoted by 𝑌𝑘𝑖𝑗, 

related to the kth feature map, satisfies the equation below:   

 

where 𝑥𝑘𝑝𝑞 refers to the pixel value located at (p,q) on the pooling region 𝑅𝑖𝑗, and ij is the 

corresponding receptive field11. Relative locations are more significant than exact 

locations, so max pooling is generally desirable. 

        To avoid overfitting in CNNs, dropout layers drop out some values in the feature 

maps by setting them to zero12. This random action will prevent the neural networks from 

getting too fitted for the training data and allow them to perform with higher accuracies 

on the testing data. 

        Finally, fully connected layers (FC) take the outputs of the feature maps from the 

previous layers and use the softmax function to transform a N-dimensional vector 

                                                           

adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-

Convolutional-Neural-Networks-Part-2/. 

11 Rawat, Waseem, and Zenghui Wang. “Deep Convolutional Neural Networks for Image 

Classification: A Comprehensive Review.” Neural Computation, vol. 29, no. 9, 2017, pp. 2352–

2449., doi:10.1162/neco_a_00990. 

12 Deshpande, Adit. “A Beginner's Guide To Understanding Convolutional Neural Networks Part 

2.” A Beginner's Guide To Understanding Convolutional Neural Networks, Github, 29 July 2016, 

adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-

Convolutional-Neural-Networks-Part-2/. 
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representative of the previous outputs into a one-dimensional vector13. This one-

dimensional vector represents the probabilities that the input images are classified as cars 

or other categories, and the summation of its values should be one14. The transformation 

of the N-dimensional vector z into the one-dimensional vector 𝜎(𝑧) can be modeled by 

the equation 

 15 

 

2.3 Hyperparameter Optimization 

        Although CNNs are generally effective at image classification, different neural 

networks may have distinct accuracies. The differences in their performances result from 

the different hyperparameters, which refer to the variable parameters in the architecture 

of the neural networks16. 

                                                           

13 Ujjwalkarn. “An Intuitive Explanation of Convolutional Neural Networks.” An Intuitive 

Explanation of Convolutional Neural Networks, The Data Science Blog, 11 Aug. 2016, 

ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/. 

14 Ujjwalkarn. “An Intuitive Explanation of Convolutional Neural Networks.” An Intuitive 

Explanation of Convolutional Neural Networks, The Data Science Blog, 11 Aug. 2016, 

ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/. 

15 Kulbear. “ReLU and Softmax Activation Functions.” ReLU and Softmax Activation Functions, 

Deep Learning Nano Foundation, 12 Feb. 2017, github.com/Kulbear/deep-learning-nano-

foundation/wiki/ReLU-and-Softmax-Activation-Functions. 

16 Raffel, Colin. “Neural Network Hyperparameters.” Neural Network Hyperparameters, Colin 

Raffel, 17 Dec. 2015, colinraffel.com/wiki/neural_network_hyperparameters. 
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        Hyperparameters include the number of convolutional layers, filter sizes, stride and 

padding values, dropout values, pooling methods, and many more17. For a given dataset 

of images, there exists a set of hyperparameters that yield the highest accuracy of 

predictions. Therefore, it is important to find the desired set of hyperparameters using 

certain optimization techniques. 

        This paper focuses on discussing the performance of Random Search and Tree-

Structured Parzen Estimator (TPE) in optimizing hyperparameters for CNNs. Random 

Search involves selecting random subsets of parameters for optimization, while TPE 

chooses parameters and updates them iteratively to minimize error.  

        Random Search is selected for discussion in this paper, since it requires much less 

resources to train than its non-probabilistic counterpart, Grid Search. While Grid Search 

trains a model by testing all possible parameter combinations and selecting the best one, 

Random Search only tests random subsets of parameters, so it lowers the costs for 

training data7.  

        In addition, TPE is chosen for this paper because it resolves the disadvantages of 

another popular probabilistic algorithm, Gaussian Processes18. Since the Gaussian 

Processes has many different configuration types, it can be difficult to select 

                                                           

17 Pham, Vu. “Bayesian Optimization for Hyperparameter Tuning.” Bayesian Optimization for 

Hyperparameter Tuning, Arimo, 18 Apr. 2016, arimo.com/data-science/2016/bayesian-

optimization-hyperparameter-tuning/. 

18 Shevchuk, Yurii. “Hyperparameter Optimization for Neural Networks.” Hyperparameter 

Optimization for Neural Networks - NeuPy, Neupy, 17 Dec. 2016, 

neupy.com/2016/12/17/hyperparameter_optimization_for_neural_networks.html#bayesian-

optimization. 
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hyperparameters; however, TPE decides the hyperparameters at the end of each iteration 

based on the newly collected observations, so it is more efficient than Gaussian 

Processes19.  

 

2.4 Random Search Algorithm 

        The Random Search Algorithm is one of the most prevalent algorithms used in 

hyperparameter optimization for neural networks. To use random search algorithm, a set 

of hyperparameters and their ranges of values must first be defined20. 

        After receiving the inputs of the hyperparameters and their possible values, Random 

Search randomly selects and runs inputted hyperparameter values21. In the figure below, 

the grid represents the hyperparameter search space and the blue points represent the 

hyperparameters chosen by Random Search. After each run, the accuracies and errors are 

recorded, so the optimal values for the hyperparameters can be achieved after comparing 

all results.  

                                                           

19 Shevchuk, Yurii. “Hyperparameter Optimization for Neural Networks.” Hyperparameter 

Optimization for Neural Networks - NeuPy, Neupy, 17 Dec. 2016, 

neupy.com/2016/12/17/hyperparameter_optimization_for_neural_networks.html#bayesian-

optimization. 

 

20 Shevchuk, Yurii. “Hyperparameter Optimization for Neural Networks.” Hyperparameter 

Optimization for Neural Networks - NeuPy, Neupy, 17 Dec. 2016, 

neupy.com/2016/12/17/hyperparameter_optimization_for_neural_networks.html#bayesian-

optimization. 

21 Bergstra, James, and Yoshua Bengio. “Random Search for Hyper-Parameter Optimization.”The 

Journal of Machine Learning Research, JMLR.org, 1 Mar. 2012, 

dl.acm.org/citation.cfm?id=2503308.2188395. 
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22 

        By randomly selecting hyperparameter values, Random Search saves the processing 

power and execution time needed to try running all possible combinations of the 

hyperparameter values. 

 

2.5 Tree-Structured Parzen Estimator Algorithm 

 

        Tree-Structured Parzen Estimator (TPE) is an efficient hyperparameter 

optimization algorithm that performs many iterations to train data. During each iteration, 

it collects new observations on the corresponding accuracies of the hyperparameters23. At 

the end of each iteration, the algorithm decides on the hyperparameters that should be 

                                                           

22 “Contest 2nd Place: Automating Data Science.” Automating Data Science, KdNuggets, 

www.kdnuggets.com/2016/08/automating-data-science.html. 

23 Bergstra, James S., et al. “NIPS Proceedingsβ.” Algorithms for Hyper-Parameter Optimization, 

12 Dec. 2011, papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization. 
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tried next. In a general sense, it stores information of past iterations and uses the previous 

results for the following iterations. 

        For the first iteration of TPE, it must collect some data to work as past iterations 

before it can start optimizing the hyperparameters24. To collect data, TPE can use any of 

the existing hyperparameter techniques, such as Grid Search, Random Search, or Hand 

Tuning. 

        After TPE has collected sufficient data, TPE separates them into two groups. The 

first group contains all the hyperparameters that yield good results after evaluation, while 

the second group contains the rest25. For the following iterations, the TPE aims to 

discover the set of hyperparameters that have higher probability to fall in the first group 

than the second group26. To achieve this goal, it attempts to maximize the Expected 

Improvement for each hyperparameter, which can be written as  

                                                           

24 Shevchuk, Yurii. “Hyperparameter Optimization for Neural Networks.” Hyperparameter 

Optimization for Neural Networks - NeuPy, Neupy, 17 Dec. 2016, 

neupy.com/2016/12/17/hyperparameter_optimization_for_neural_networks.html#bayesian-

optimization. 

25 Shevchuk, Yurii. “Hyperparameter Optimization for Neural Networks.” Hyperparameter 

Optimization for Neural Networks - NeuPy, Neupy, 17 Dec. 2016, 

neupy.com/2016/12/17/hyperparameter_optimization_for_neural_networks.html#bayesian-

optimization. 

26 Shevchuk, Yurii. “Hyperparameter Optimization for Neural Networks.” Hyperparameter 

Optimization for Neural Networks - NeuPy, Neupy, 17 Dec. 2016, 

neupy.com/2016/12/17/hyperparameter_optimization_for_neural_networks.html#bayesian-

optimization. 
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where f(x) represents the probability that the selected data falls in the first group while 

s(x) is the probability that it falls in the second group27. 

 

28 

 

 

 

                                                           

27 Shevchuk, Yurii. “Hyperparameter Optimization for Neural Networks.” Hyperparameter 

Optimization for Neural Networks - NeuPy, Neupy, 17 Dec. 2016, 

neupy.com/2016/12/17/hyperparameter_optimization_for_neural_networks.html#bayesian-

optimization. 

28 Shevchuk, Yurii. “Hyperparameter Optimization for Neural Networks.” Hyperparameter 

Optimization for Neural Networks - NeuPy, Neupy, 17 Dec. 2016, 

neupy.com/2016/12/17/hyperparameter_optimization_for_neural_networks.html#bayesian-

optimization. 
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3. Methodology to Compare Random Search and Tree-Structured Parzen Estimator 

3.1 Experiments Design 

        Since there are infinite CNN architectures due to the vast quantity of 

hyperparameters, this paper focuses on only two custom CNNs for simplicity: simple 

CNN and complex CNN. The simple CNN has relatively less layers and hyperparameters 

to optimize, while the complex CNN has relatively more to optimize. Details to the 

architectures of simple CNN and complex CNN will be provided in the later sections 

(Section 4.1, 5.1). 

        For the experiments, a simple CNN and a complex CNN are built to train and test 

images from an image dataset. For every chosen hyperparameter, Random Search and 

TPE are run for each CNN, and the results are compared. For each hyperparameter case, 

all other hyperparameter values are predefined since they are control variables. 

        The efficiencies of the two algorithms for each hyperparameter case are determined 

by the accuracies and errors of their optimized CNNs. Higher accuracies and lower errors 

of the optimized CNNs indicate that the hyperparameter algorithm produces better 

performance.  

        The execution times of the runs are also recorded to compare the time both 

algorithms use because time is usually an important factor for consideration, especially 

for trainings of large CNNs. 

        The testing environment is a personal laptop with processor i7-4720HQ that clocks 

up to 2.6 GHz, Nvidia GTX950M, and 12 GB RAM. 
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3.2 Chosen Hyperparameters 

        For both simple and complex CNNs, the following hyperparameters are selected for 

testing: 

• The number of convolutional layers: the number of convolutional layers 

determines how many convolutions the filters perform across the images and thus 

heavily affects the classifying accuracy of the CNN. 

• Batch size: batch size, which refers to the number of training examples utilized in 

one iteration, determines the number of times the neurons’ weights are updated 

and therefore affects the performance of the CNN29. 

• Activation functions: different activation functions introduce different forms of 

non-linearity into the CNN, which influences its variability and accuracy. 

• Dropout values: the dropout values influence the CNN’s ability to respond and 

correct the overfitting that happens within the network.  

• Optimizer method: the optimizer methods minimize the loss functions generated 

iteratively at the output layer and determine the optimized weights for each 

neuron, affecting the performance of the network. 

 

 

 

                                                           

29 Gaillard, Frank. “Batch Size (Machine Learning).” Batch Size (Machine Learning), 

Radiopaedia, radiopaedia.org/articles/batch-size-machine-learning. 
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3.3 Libraries Descriptions 

        All code is written in Python, as Python provides many convenient, state-of-the-art 

machine learning libraries for use. 

        The library used for building the structure of the CNN is Keras. Keras is a high-level 

neural network API that is written in Python and capable of using popular machine 

learning libraries for backend processing tasks30. The experiments use the TensorFlow 

library, which is an open source software for numerical computation, for providing the 

methods needed to train and test data31. 

        Furthermore, the Hyperas library is used to provide the implementation for Random 

Search and TPE for Keras models32. 

 

 

 

 

 

 

 

                                                           

30 “Keras: The Python Deep Learning Library.” Keras Documentation, Keras, keras.io/. 

31 “TensorFlow.” TensorFlow, Tensorflow, www.tensorflow.org/. 

32 “Hyperas.” Hyperas by Maxpumperla, Github, maxpumperla.github.io/hyperas/. 
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3.4 Dataset Descriptions 

        For the image dataset, the popular CIFAR-10 dataset is used for the entire training, 

testing, and optimizing tasks. Details of the CIFAR-10 dataset are provided below33. 

 

 

 

 

 

 

 

 

                                                           

33 Krizhevsky, Alex. “The CIFAR-10 Dataset.” CIFAR-10 and CIFAR-100 Datasets, University 

of Toronto, www.cs.toronto.edu/~kriz/cifar.html. 
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4. Comparing Random Search and Tree-Structured Parzen Estimator Algorithms 

for Simple CNN 

4.1 Architecture of Simple CNN 

       The simple CNN used in this paper has the following architecture: 4 convolutional 

layers, 6 activation layers, 2 max-pooling layers, and 3 dropout layers. The first 

convolutional layer acts as the input layer, while the last activation layer acts as the 

output layer. 
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4.2 Optimal Number of Convolutional Layers 

        The code tests the optimal number of convolutional layers in the simple CNN (See 

Appendix A.1). The number of convolutional layers can be either 2 or 4. 

 

        The tables show that Random Search’s accuracy 0.72970 is higher than TPE’s 

accuracy 0.71450, while Random Search’s loss 0.81089 is lower than TPE’s loss 

0.82815, both of which indicate Random Search’s better performance for optimizing the 

number of convolutional layers in the simple CNN.  

        Although the difference in execution times, 3 minutes, is small, Random Search still 

runs a little faster than TPE. Therefore, combining all accuracy, loss, and time factors, 

Random Search has better performance in this case. 
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4.3 Optimal Batch Size 

        The code tests the optimal batch size in the simple CNN. The batch size is selected 

from the values: 16, 32, 64, 128, 256, and 512 (See Appendix A.2). 

 

        The tables show that TPE has higher accuracy than Random Search, 0.64380 

compared with 0.62680, respectively. However, the loss of Random Search is 1.08006, 

smaller than the loss of TPE 1.10891. From the data, no conclusion about the efficiency 

of two algorithms can be made.  

        Still, Random Search uses significantly less time to optimize the batch size than 

TPE, as Random Search takes 4 hours and 53 minutes while TPE takes 5 hours and 23 

minutes. 
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4.4 Optimal Activation Functions 

        The code tests the simple CNN for the optimal activation functions (See Appendix 

A.3). The optimized activation functions can be “relu,” “sigmoid,” or “tanh.” 

 

        As the tables indicate, the accuracy and loss of the model optimized using Random 

Search and TPE are both identical. This shows that they are both very inefficient at 

optimizing activation functions considering the extremely low accuracies and high losses.  

        However, Random Search still computes faster than TPE, 4 hours and 53 minutes 

compared with 5 hours and 11 minutes. 
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4.5 Optimal Dropout Values 

        The code tests optimal parameters of the dropout values in the simple CNN (See 

Appendix A.4). The optimized dropout values can be any number between 0 and 1, 

exclusive.  

 

        As the results show, Random Search is more efficient than TPE when they optimize 

dropout values in the simple CNN. Random Search has an accuracy of 0.66720, higher 

than TPE’s 0.65580, and the loss of Random Search 0.98590 is also smaller than TPE’s 

1.02881. 

        The time spent on running hyperparameter optimization on dropout values is about 

the same, although Random Search takes slightly less time than TPE, 5 hours and 11 

minutes compared with 5 hours and 15 minutes. 
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4.6 Optimal Optimizer Method 

     The possible values for the optimizer method are “rmsprop,” “adam,” “sgd,” 

“adagrad,” “adadelta,” “adamax,” and “nadam.”34 The code tests for the optimal 

optimizer method within the simple CNN (See Appendix A.5). 

 

        The performance of Random Search and TPE to optimize the optimizer method is 

similar: their accuracies are the same by the hundredth, with Random Search’s accuracy 

0.79880 slightly higher than TPE’s 0.79680. Random Search’s loss is also lower, 

indicating Random Search’s better performance.  

        With higher accuracy, Random Search also runs with less execution time, so 

Random Search is more efficient than TPE for optimizing the optimizer method. 

 

 

 

                                                           

34 “Optimizers.” Optimizers - Keras Documentation, Keras, keras.io/optimizers/. 
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4.7 Optimal Values for All Chosen Hyperparameters 

        After evaluating the efficiency of the two algorithms for different hyperparameters, 

it is significant to see their performances when all hyperparameters are optimized 

simultaneously. This is generally useful for most hyperparameter testing cases that 

attempt to optimize a neural network to yield the best accuracy by optimizing every 

possible hyperparameters. 

        The code tests for all chosen hyperparameters within the simple CNN (See 

Appendix A.6). 
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        The tables clearly demonstrate that Random Search produces better performance 

than TPE, since Random Search’s accuracy 0.49950 is higher than TPE’s accuracy 

0.33940, and Random Search’s loss 1.39453 is lower than 1.65564.  

        Similar to other previous hyperparameter cases, Random Search also has time 

advantage because it takes relatively less time to train using its algorithm than TPE. 
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5. Comparing Random Search and Tree-Structured Parzen Estimator for Complex 

CNN 

5.1 Architecture of Complex CNN 

       The complex CNN used in this paper has the following architecture: 8 convolutional 

layers, 12 activation layers, 2 max pooling layers, and 6 dropout layers.  The first 

convolutional layer acts as the input layer, while the last activation layer acts as the 

output layer. 
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5.2 Optimal Number of Convolutional Layers 

        The code tests for all hyperparameters for the complex CNN (See Appendix B.1). 

The possible optimal number of convolutional layers can be either 6 or 8. 

 

        The tables show that TPE has higher accuracy 0.77280 and lower loss 0.92918 than 

Random Search’s accuracy 0.62450 and loss 1.30024. In contrast with the outcomes 

presented in the simple CNN, TPE offers better performance for optimizing the number 

of convolutional layers in the complex CNN. 

        In terms of execution times, Random Search runs faster than TPE. This is consistent 

with the simple CNN for testing the number of convolutional layers.  

        However, the difference in execution times between two algorithms in two 

architectures are very different. In the simple architecture, there is only a 3-minute 

difference, but for the complex architecture, there is a 24-minute difference (See Section 

4.2). This means that higher complexity of CNN may produce more significant difference 
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in execution times and therefore also induce considerations of time as an important factor 

in deciding which algorithm to use. 
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5.3 Optimal Batch Size 

        The code tests for the optimal batch size within the complex CNN (See Appendix 

B.2). 

 

        Similar to those from the simple CNN, the results indicate that it is unclear which 

algorithm performs better for optimizing batch size in complex CNN. TPE has higher 

accuracy yet also higher loss than Random Search. 

        For execution time, Random Search, in this case, runs 12 minutes faster than TPE. 

 

 

 

 

 

 

 

 

 



Comparing the Efficiency of Random Search and Tree-Structured Parzen Estimator Algorithms to 
Optimize Convolutional Neural Networks for Image Recognition 

33 
 

5.4 Optimal Activation Functions 

        The code tests for the optimal activation functions within the complex CNN (See 

Appendix B.3). 
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        Interestingly, the results of accuracy and loss are exactly the same for both simple 

and complex CNNs. Random Search and TPE score on the same level based on accuracy 

and loss. 

       However, Random Search, again, uses less time to run than TPE, making TPE 

having less advantage in execution times. 
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5.5 Optimal Dropout Values 

        The code tests for the optimal dropout values within the complex CNN (See 

Appendix B.4). 

 

        For optimizing dropout values in the complex CNN, TPE has higher accuracy 

0.56426 than Random Search 0.46314. It also performs with less loss 1.20152 than 

Random Search 1.30264. This clearly points out that TPE yields better performance. 

        However, like the rest of the cases, TPE still runs 17 minutes slower than Random 

Search and may grow if an even more complex CNN is trained. 
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5.6 Optimal Optimizer Method 

        The code tests for the optimal optimizer method within the complex CNN (See 

Appendix B.5). 

 

        The tables demonstrate that Random Search and TPE both have the same results for 

accuracy and loss. Thus, they have equal performance for optimizing optimal function in 

the complex CNN. 

        For execution times, TPE runs 21 minutes slower than Random Search, which needs 

to be taken into consideration when applying either algorithm. 
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5.7 Optimal Values for All Chosen Hyperparameters 

        The code tests for all hyperparameters within the complex CNN (See Appendix 

B.6). 
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        For the optimization of all chosen hyperparameters, TPE is explicitly shown to 

perform better in the complex CNN. It performs with better accuracy 0.41583 than 

Random Search 0.33573 and with less loss 1.86930 than Random Search 1.90258. 

        However, Random Search uses much less time than TPE in a complex CNN. For 

complex CNN, there is a massive 57 minutes time difference between the execution times 

of the two algorithms. For more intensive trainings that would take up days or weeks, the 

time difference could scale up and be the deciding factor to use Random Search even 

though TPE tends to yield higher accuracy. 
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6. Comparing the Efficiency of Random Search and Tree-Structured Parzen 

Estimator for All Chosen Hyperparameters in Simple and Complex CNNs 

6.1 Accuracy 

        The graphs below are all plotted with accuracy against the number of epochs during 

hyperparameter optimization for all the chosen hyperparameters. 
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        Figure 7 and Figure 8, which both show the performance of Random Search, 

demonstrate a difference in the accuracy. Although the shapes of the graphs are similar, 

Random Search scores higher on accuracy in the simple CNN than in the complex CNN. 

        However, Figure 9 and Figure 10 indicate that TPE has better accuracy in complex 

CNN than simple CNN, as evidenced by the former’s higher data points in the later 

epochs. 
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6.2 Loss 

        The graphs below are all plotted with loss against the number of epochs during 

hyperparameter optimization for all the chosen hyperparameters. 
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        By comparing the graphs in Figure 11 and Figure 12, it can be deduced that 

Random Search shows less loss in simple CNN, since its data points are all lower than 

that of TPE. 

        Yet, Figure 13 and Figure 14 addresses TPE’s lower loss in complex CNN than in 

simple CNN, since the latter figure has lower points for the later epochs.  
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7. Conclusion 

        The tables below summarize the results of the experiments conducted throughout the 

entire hyperparameter optimization process for both simple and complex CNNs. 
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        In simple CNNs, when optimizing the number of convolutional layers, the dropout 

values, optimizer method, and all chosen hyperparameters, Random Search is more 

efficient. However, for activation functions, both algorithms give the same performance 

in terms of accuracy and loss, so they have equal efficiency. Lastly, the efficiency of the 

algorithms for batch size is inconclusive because Random Search has lower accuracy and 

lower loss than TPE. 

        For complex CNNs, TPE is more efficient for optimizing the number of 

convolutional layers, dropout values, and all chosen hyperparameters. However, in 

optimizing activation functions and the optimizer method, TPE and Random Search 

perform equally. There is also no conclusion for batch size again, since TPE has higher 

accuracy and higher loss than Random Search. 

        Based on accuracy and loss, Random Search can be generally considered as more 

efficient for optimizing simple CNNs, while TPE is more efficient for complex CNNs. 

        For execution time, TPE is found to take more time than Random Search in both 

types of architectures, so Random Search has the advantage in time. For simple CNNs, it 

is reasonable to use Random Search since it not only produces higher accuracy and lower 

loss but also consumes less time for most cases. However, for complex CNNs, TPE 

yields more accurate results, but Random Search takes up significantly less time. Thus, 

the purpose of the model, available resources, and difference in execution times between 

two algorithms, as well as other relevant factors, all need to be considered before 

deciding to choose Random Search or TPE. 

 



Comparing the Efficiency of Random Search and Tree-Structured Parzen Estimator Algorithms to 
Optimize Convolutional Neural Networks for Image Recognition 

45 
 

8. Limitations of this Paper 

        There are several limitations to this paper. First, this paper only discusses the basic 

hyperparameters for CNNs: the number of convolutional layers, batch size, activation 

function, dropout value, and the optimizer method. The hyperparameters are not limited 

to these; in fact, there are countless hyperparameters within any neural network. 

        Due to the processing power limitations and time restraints, the CNNs cannot be 

trained for larger number of epochs. Generally, the longer the training time is, the better 

the performance of an optimized CNN.  

        In addition, the architecture for the CNNs are customarily built primarily for 

simplicity and convenience, and thus may not yield the best possible network architecture 

for the purpose of image recognition. 

        Furthermore, this paper only discusses hyperparameter optimization for image 

recognition which uses the CIFAR-10 image dataset. Although the dataset is one of the 

most comprehensive image dataset available on the Internet today, it only consists of a 

small fraction of familiar images, and hence, could not be generalized for the recognition 

of other images. 
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9. Further Investigation 

        To further investigate this topic, more hyperparameters should be tested to evaluate 

the performances of Random Search and TPE algorithms. Selection of more 

hyperparameters would allow more computer scientists and researchers to acknowledge 

the algorithms’ performance on a wide variety of hyperparameters and will alleviate their 

time and resources to discover them themselves. 

        Future explorations around this topic can also focus on the efficiency of Random 

Search and TPE in other types of artificial neural networks, such as feed forward 

networks or recurrent neural networks. Although CNN is the most popular neural 

network used now, pursuing this research would be helpful to enhance the performances 

of other neural networks. 
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11. Appendix 

A. Source Code of Hyperparameter Optimization for Simple CNN 

A.1 Optimal Number of Convolutional Layers  
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A.2 Optimal Batch Size 
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A.3 Optimal Activation Functions 
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A.4 Optimal Dropout Values 
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A.5. Optimal Optimizer Method 
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A.6 Optimal Values for All Chosen Hyperparameters 
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B. Source Code of Hyperparameter Optimization for Complex CNN 

B.1 Optimal Number of Convolutional Layers 
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B.2 Optimal Batch Size 
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B.3 Optimal Activation Functions 
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B.4 Optimal Dropout Values 
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B.5 Optimal Optimizer Method 
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B.6 Optimal Values for All Chosen Hyperparameters 
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C. Accuracy and Loss of All Chosen Hyperparameters for Simple CNN 

C.1 Random Search 

        The highlighted accuracy and loss represent those of the optimized CNN. 

Epoch Accuracy Loss Epoch Accuracy Loss Epoch Accuracy Loss 

1 0.09891 2.31080 31 0.21733 2.29417 61 0.09915 2.41330 

2 0.10033 2.30320 32 0.25780 2.29084 62 0.10026 2.30430 

3 0.09937 2.30280 33 0.13542 2.29010 63 0.09872 2.30437 

4 0.09933 2.30280 34 0.10011 2.28973 64 0.10164 2.30378 

5 0.09967 2.30280 35 0.10000 2.27842 65 0.10991 2.29863 

6 0.09812 2.30260 36 0.09981 2.26424 66 0.18216 2.16874 

7 0.09900 2.30280 37 0.10000 2.25011 67 0.21626 2.01538 

8 0.10198 2.30260 38 0.10025 2.22462 68 0.23192 1.95144 

9 0.09770 2.30270 39 0.09991 2.23635 69 0.24180 1.90116 

10 0.10040 2.30280 40 0.10037 2.22410 70 0.25516 1.87065 

11 0.10023 2.30260 41 0.09951 2.20680 71 0.26710 1.83641 

12 0.09865 2.30260 42 0.10025 2.20157 72 0.27383 1.80283 

13 0.10040 2.30260 43 0.10011 2.19560 73 0.29790 1.74286 

14 0.09626 2.30270 44 0.09990 2.18364 74 0.30597 1.72828 

15 0.09813 2.30260 45 0.10017 2.16379 75 0.32636 1.68752 

16 0.10068 2.30260 46 0.10000 2.14468 76 0.34399 1.64995 

17 0.10062 2.30260 47 0.10031 2.13250 77 0.35650 1.62940 

18 0.10159 2.30270 48 0.09986 2.11923 78 0.36093 1.58539 

19 0.09962 2.30260 49 0.10000 2.10571 79 0.38736 1.56155 

20 0.09934 2.30260 50 0.10000 2.09434 80 0.40355 1.53579 

21 0.09960 2.30270 51 0.09997 2.08857 81 0.41974 1.50967 

22 0.09853 2.30260 52 0.10028 2.06330 82 0.43740 1.47070 

23 0.10067 2.30260 53 0.09980 2.05235 83 0.45286 1.44210 

24 0.10112 2.30260 54 0.10022 2.04317 84 0.48681 1.41835 

25 0.09928 2.30260 55 0.09987 2.04000 85 0.49950 1.39453 

26 0.09874 2.30260 56 0.10010 2.03635 86 0.48014 1.37152 

27 0.10216 2.30260 57 0.10000 2.02520 87 0.47372 1.36059 

28 0.09976 2.30260 58 0.09986 2.01943 88 0.46920 1.35642 

29 0.09823 2.30260 59 0.10026 2.00156 89 0.43730 1.34531 

30 0.09960 2.30260 60 0.10031 1.99837 90 0.43470 1.33190 
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C.2 Tree-Structured Parzen Estimator 

        The highlighted accuracy and loss represent those of the optimized CNN. 

Epoch Accuracy Loss Epoch Accuracy Loss Epoch Accuracy Loss 

1 0.09931 2.31082 31 0.18100 2.35055 61 0.10010 2.42070 

2 0.10240 2.30312 32 0.22180 2.34521 62 0.09954 2.30400 

3 0.10115 2.30370 33 0.11734 2.32725 63 0.09993 2.30400 

4 0.09990 2.30286 34 0.10000 2.30865 64 0.09914 2.30390 

5 0.10000 2.30274 35 0.09990 2.28042 65 0.14324 2.25770 

6 0.10000 2.30287 36 0.10000 2.27725 66 0.19236 2.09740 

7 0.09955 2.30273 37 0.09990 2.26840 67 0.20417 1.99670 

8 0.10026 2.30270 38 0.10000 2.25270 68 0.20845 1.96550 

9 0.10027 2.30264 39 0.10000 2.24948 69 0.21134 1.94620 

10 0.09946 2.30267 40 0.10010 2.23729 70 0.21362 1.92920 

11 0.09945 2.30276 41 0.10010 2.22660 71 0.21470 1.92160 

12 0.10000 2.30267 42 0.09991 2.21965 72 0.21580 1.91080 

13 0.10087 2.30266 43 0.09986 2.20586 73 0.22717 1.90360 

14 0.09995 2.30278 44 0.10044 2.19687 74 0.23959 1.89390 

15 0.10317 2.30269 45 0.09960 2.19650 75 0.24381 1.87940 

16 0.09985 2.30272 46 0.10035 2.18466 76 0.24624 1.85170 

17 0.09684 2.30265 47 0.10010 2.17295 77 0.25367 1.83140 

18 0.10163 2.30264 48 0.10000 2.16277 78 0.27250 1.80360 

19 0.10055 2.30264 49 0.09990 2.15014 79 0.28783 1.78780 

20 0.10074 2.30260 50 0.10000 2.14676 80 0.30141 1.75200 

21 0.10319 2.30260 51 0.10020 2.13982 81 0.31038 1.72170 

22 0.09948 2.30260 52 0.09973 2.12667 82 0.32543 1.69650 

23 0.10150 2.30260 53 0.10010 2.11053 83 0.33940 1.65560 

24 0.09965 2.30260 54 0.09991 2.10362 84 0.33070 1.67120 

25 0.10020 2.30260 55 0.10030 2.09547 85 0.32061 1.68240 

26 0.09944 2.30260 56 0.09981 2.08465 86 0.31157 1.68230 

27 0.09824 2.30260 57 0.10035 2.07395 87 0.31117 1.69020 

28 0.10186 2.30260 58 0.10000 2.06236 88 0.30853 1.69280 

29 0.10010 2.30260 59 0.09972 2.05560 89 0.30562 1.69010 

30 0.09957 2.30270 60 0.10000 2.05000 90 0.29493 1.69540 
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D. Accuracy and Loss of All Chosen Hyperparameters for Complex CNN 

D.1 Random Search 

        The highlighted accuracy and loss represent those of the optimized CNN. 

Epoch Accuracy Loss Epoch Accuracy Loss Epoch Accuracy Loss 

1 0.09938 2.42658 31 0.19104 2.41047 61 0.10010 2.44561 

2 0.10011 2.43650 32 0.21495 2.36046 62 0.09802 2.31954 

3 0.10011 2.45695 33 0.12856 2.34761 63 0.11734 2.23460 

4 0.09949 2.42951 34 0.10000 2.32657 64 0.11825 2.17453 

5 0.10027 2.42538 35 0.09990 2.29532 65 0.14334 2.12025 

6 0.10009 2.41466 36 0.10000 2.27340 66 0.19256 2.08750 

7 0.10009 2.42569 37 0.09990 2.26831 67 0.21546 2.04941 

8 0.09955 2.41270 38 0.11251 2.25380 68 0.22821 2.03094 

9 0.10007 2.40467 39 0.10000 2.24568 69 0.23100 2.03338 

10 0.10011 2.40691 40 0.10010 2.23920 70 0.23592 2.02560 

11 0.10041 2.40481 41 0.10010 2.22015 71 0.24438 2.01129 

12 0.09931 2.40548 42 0.09980 2.21172 72 0.24970 2.00325 

13 0.09987 2.40815 43 0.09185 2.20435 73 0.24794 1.99818 

14 0.10055 2.40548 44 0.10196 2.19546 74 0.25011 1.98547 

15 0.09977 2.40464 45 0.09943 2.19340 75 0.25318 1.98547 

16 0.09985 2.40465 46 0.11541 2.18620 76 0.25156 1.97825 

17 0.10039 2.40454 47 0.10324 2.17496 77 0.26431 1.96360 

18 0.09955 2.40451 48 0.10000 2.15915 78 0.27251 1.95671 

19 0.10035 2.40453 49 0.09351 2.15001 79 0.28783 1.95824 

20 0.09953 2.40453 50 0.10000 2.14954 80 0.29141 1.94604 

21 0.1012 2.40453 51 0.10342 2.13731 81 0.31031 1.93100 

22 0.09929 2.40453 52 0.09831 2.12356 82 0.32815 1.92436 

23 0.09937 2.40453 53 0.10013 2.11140 83 0.32916 1.92120 

24 0.10021 2.40453 54 0.09835 2.10012 84 0.33541 1.91578 

25 0.10074 2.40453 55 0.10541 2.09543 85 0.33573 1.90258 

26 0.10031 2.40453 56 0.09832 2.08843 86 0.33157 1.91541 

27 0.10017 2.40453 57 0.11454 2.07031 87 0.32168 1.91682 

28 0.09865 2.40453 58 0.10000 2.06980 88 0.31676 1.92046 

29 0.101 2.40453 59 0.09972 2.05539 89 0.30165 1.93695 

30 0.09927 2.40453 60 0.10000 2.05593 90 0.30770 1.93043 
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D.2 Tree-Structured Parzen Estimator 

        The highlighted accuracy and loss represent those of the optimized CNN. 

Epoch Accuracy Loss Epoch Accuracy Loss Epoch Accuracy Loss 

1 0.10008 2.42560 31 0.19359 2.29417 61 0.09781 2.44300 

2 0.09997 2.42570 32 0.17019 2.29084 62 0.10438 2.42542 

3 0.10015 2.42560 33 0.14958 2.29010 63 0.09917 2.40318 

4 0.09995 2.42580 34 0.12951 2.28973 64 0.10031 2.38605 

5 0.10011 2.42590 35 0.10169 2.27842 65 0.10991 2.36710 

6 0.09989 2.42570 36 0.09982 2.26424 66 0.18491 2.33432 

7 0.10011 2.42580 37 0.11940 2.25011 67 0.20718 2.30367 

8 0.09975 2.42570 38 0.10025 2.22462 68 0.22954 2.26597 

9 0.09981 2.42570 39 0.08291 2.23635 69 0.24195 2.23601 

10 0.10043 2.42580 40 0.07041 2.22410 70 0.25015 2.20682 

11 0.09967 2.42570 41 0.07041 2.20680 71 0.26549 2.17938 

12 0.10029 2.42560 42 0.07924 2.20157 72 0.27941 2.13828 

13 0.09961 2.42570 43 0.08043 2.19560 73 0.29491 2.09520 

14 0.10078 2.42580 44 0.08710 2.18364 74 0.30963 2.06864 

15 0.09923 2.42580 45 0.08495 2.16379 75 0.32094 2.04682 

16 0.09971 2.42560 46 0.08596 2.14468 76 0.34429 2.00577 

17 0.10096 2.42560 47 0.07437 2.13250 77 0.35058 1.96591 

18 0.09867 2.42568 48 0.08002 2.11923 78 0.36283 1.94638 

19 0.10102 2.42570 49 0.08346 2.10571 79 0.38081 1.91568 

20 0.09983 2.42570 50 0.07201 2.09434 80 0.40350 1.88934 

21 0.10027 2.42580 51 0.08560 2.08857 81 0.41583 1.86930 

22 0.09961 2.42560 52 0.08417 2.06330 82 0.40538 1.87902 

23 0.09977 2.42560 53 0.08956 2.05235 83 0.39238 1.87628 

24 0.10076 2.42560 54 0.08040 2.04317 84 0.38860 1.89360 

25 0.09957 2.42570 55 0.07032 2.04000 85 0.37935 1.90238 

26 0.09971 2.42560 56 0.07955 2.03635 86 0.36738 1.91682 

27 0.10009 2.42570 57 0.07576 2.02520 87 0.35601 1.92685 

28 0.09937 2.42580 58 0.07385 2.01943 88 0.34636 1.93913 

29 0.10019 2.42570 59 0.07942 2.00156 89 0.34632 1.94537 

30 0.10039 2.42570 60 0.07956 1.99837 90 0.33539 1.95384 
 


